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[1] A new stochastic approach proposed by Zhang and Lu (2004), called the
Karhunen-Loeve decomposition-based moment equation (KLME), has been extended to
solving nonlinear, unconfined flow problems in randomly heterogeneous aquifers. This
approach is on the basis of an innovative combination of Karhunen-Loeve
decomposition, polynomial expansion, and perturbation methods. The random log-
transformed hydraulic conductivity field (lnKS) is first expanded into a series in terms of
orthogonal Gaussian standard random variables with their coefficients obtained as the
eigenvalues and eigenfunctions of the covariance function of lnKS. Next, head h is
decomposed as a perturbation expansion series Sh(m), where h(m) represents the
mth-order head term with respect to the standard deviation of lnKS. Then h(m) is further
expanded into a polynomial series of m products of orthogonal Gaussian standard
random variables whose coefficients hi1,i2,. . .,im

(m) are deterministic and solved sequentially
from low to high expansion orders using MODFLOW-2000. Finally, the statistics of
head and flux are computed using simple algebraic operations on hi1,i2,. . .,im

(m) . A series
of numerical test results in 2-D and 3-D unconfined flow systems indicated that the
KLME approach is effective in estimating the mean and (co)variance of both heads and
fluxes and requires much less computational effort as compared to the traditional Monte
Carlo simulation technique.
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1. Introduction

[2] It has been long recognized that geological media
possess a significant amount of spatial variability in the
lithologic, petrophysical and structural components such
that their key medium properties, e.g., permeability and
porosity, which are often measured at only a few locations,
are subject to several sources of errors when extending the
limited data to areas where measurements are not available.
As a result, the equations that govern subsurface physical
and chemical fluid processes become stochastic and model
predictions are best described as probability distributions
instead of deterministic quantities. To evaluate uncertainties
in subsurface fluid modeling, stochastic approaches have
been developed [Dagan, 1989; Gelhar, 1993; Cushman,
1997; Zhang, 2002; Rubin, 2003]. Although other types of
uncertainties are possible [Zhang, 2002], only the parameter
uncertainty of the permeability is examined in this work.
[3] On the basis of how uncertainty is treated, two

different stochastic frameworks can be identified in a
general sense, namely, Monte Carlo (MC) simulation and

the moment equation (ME) approach. In the MC simulation
method [e.g., Hassan et al., 1998; Ballio and Guadagnini,
2004], uncertainty is indirectly considered through multiple,
equally probable realizations of uncertain medium param-
eters. Each realization is then evaluated individually in a
deterministic manner and the statistics of model predictions
are computed from the results of all the parameter realiza-
tions. The MC method is conceptually straightforward and
is easy to apply in practice. The major disadvantage is that
it generally requires an extensive, sometimes formidable,
computational effort, especially when the system under
consideration is large-scale and exhibits nonlinear mechan-
ics. Diagnostic criteria are often not obvious for evaluating
statistical convergence in MC simulations [Ballio and
Guadagnini, 2004], which further hinders its applicability
in practice. On the other hand, in the ME approach
[Dagan, 1982, 1985; Graham and McLaughlin, 1989;
Neuman, 1993; Deng and Cushman, 1995; Hsu et al.,
1996; Ghanem, 1998; Zhang, 1998; Amir and Neuman,
2001; Zhang and Lu, 2002], uncertainty is directly incor-
porated into governing equations. Using the perturbation
technique, equations are derived for the statistical moments
(typically the first two moments, mean and covariance) of
model predictions. Generally, analytical solutions of the
moment equations are difficult to obtain except for some
limiting cases under simplified conditions. The computa-
tional effort required in the numerical ME approach
increases rapidly with the size of model, which makes
its application infeasible in most field practices.
[4] In recent years new stochastic approaches have been

developed that rely on the Karhunen-Loeve (KL) decom-
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position of the underlying random fields [Ghanem and
Spanos, 1991; Ghanem and Dham, 1998; Zhang and Lu,
2004]. Ghanem and Spanos [1991] used the Karhunen-
Loeve (KL) decomposition [Loeve, 1977] to expand the
independent random processes and the dependent variables
were represented by an orthogonal basis of polynomial
chaos. This KL/polynomial chaos method has been applied
to developing a two-dimensional multiphase model in a
random porous medium [Ghanem and Dham, 1998].
[5] Zhang and Lu [2004] proposed a new approach,

called the Karhunen-Loeve decomposition-based moment
equation (KLME), to calculate the mean and covariance of
hydraulic heads where the permeability field is randomly
heterogeneous and flow is saturated and confined. Instead
of the polynomial chaos basis, dependent variables were
expanded into a perturbation series in which each individual
term was further decomposed as products of orthogonal
random variables. The statistical moments of model pre-
dictions were constructed algebraically based on the coef-
ficients of dependent variable expansions. Unlike the
conventional ME method, it has been demonstrated that
the KLME approach does not require solving the covariance
equations directly and is thus much more efficient compu-
tationally. In contrast to the KL/polynomial chaos approach
that leads to coupled equations, the coefficient equations in
KLME can be solved sequentially from low to high expan-
sion orders and are independent within the same order. Yang
et al. [2004] applied the KLME approach to saturated-
unsaturated single-phase flow. Lu and Zhang [2004b]
extended the approach to efficiently incorporate existing
direct measurements of the hydraulic conductivity. Chen et
al. [2005] applied the approach to modeling steady state
two-phase flow.
[6] In this work, we extend the KLME approach to

unconfined flow systems. Despite the relative large body
of literature on stochastic hydrology, little attention has been
paid to uncertainty analysis on unconfined flow under
general conditions. Compared to confined flow, the uncon-
fined flow governing equation is generally formulated as
nonlinear in groundwater simulation and such nonlinearity
is the major factor that slows the progress of stochastic
research on the subject.
[7] The purpose of this study is to investigate the effects

of randomness in the hydraulic conductivity field upon the
statistics of model predictions (i.e., hydraulic heads and
Darcy fluxes). Our strategy is to use the KL decomposition
technique to expand the random hydraulic field and the
perturbation method to expand model predictions. The
expanded equations are reformulated such that they share
the same structure as the original governing equation and
therefore any existing simulator, such as MODFLOW-2000
[Harbaugh et al., 2000], can be taken advantage of to speed
up the solution procedure.
[8] The remainder of this paper is organized as follows.

We start by introducing the mathematical model that we
solve for unconfined flow in this work. In line with the
MODFLOW-2000 formulation, the governing equations for
a general 3-D unconfined system are obtained by modifying
the general Boussinesq equation for 2-D unconfined flow
and taking into account vertical flow between top uncon-
fined layer and underlying confined portions. Next, we
derive a system of stochastic flow equations based on the

KLME approach and describe their solution procedure.
Finally, we evaluate the accuracy and computational effi-
ciency of the KLME approach in unconfined flow systems
as compared to the traditional MC simulation technique and
offer some concluding remarks summarized from this work.

2. Stochastic Formulation of Unconfined Flow

2.1. Mathematical Model

[9] The 2-D unconfined flow governing equation under
the Dupuit assumption can be written as [Bear, 1972],

rxy � KS xð ÞhB x; tð Þrxyh x; tð Þ
� �

þ gu ¼ Sy
@h x; tð Þ

@t
; ð1Þ

where KS(x) is the hydraulic conductivity; hB(x, t) =
h(x, t) � BOT1 is the saturated thickness, h(x, t) is the
hydraulic head; BOT1 is the bottom elevation of the
unconfined aquifer; gu (L/T) is the sink/source term applied
to the water table layer (e.g., recharge); Sy is specific yield; x =
(x, y)T is the spatial Cartesian coordinate vector (where
superscript T indicates transpose); t is time; and rxy is defined
as (@/@x, @/@y). Note that when BOT1 is assumed to be zero,
hB(x, t) reduces to h(x, t).
[10] In practice, however, it is generally more accurate to

represent the unconfined flow system as several different
layers in 3-D, with the top layer often under water table
conditions. Water communicates vertically between the top
water table layer and underlying confined portions. Taking
into account the vertical flow between water table and
confined layers, we write the governing equation for the
top water table layer as

rxy � KS xð ÞhB x; tð Þrxyh x; tð Þ
� �

þ KS xð Þ @h x; tð Þ
@z

þ gu ¼ Sy
@h x; tð Þ

@t
; ð2aÞ

where KS(x)@h(x, t)/@z represents a Darcy’s flux between
the water table and underlying confined layers in the
vertical direction. For the underlying confined portions, the
governing equation can be written as [Bear, 1972]

r � KS xð Þrh x; tð Þ½ 	 þ gc ¼ SS
@h x; tð Þ

@t
; ð2bÞ

where gc (1/T) is the sink/source that is applied to the
confined portions; Ss is the specific storage; and r stands
for (@/@x, @/@y, @/@z). As shown above, equations (2a) and
(2b) are coupled through vertical Darcy’s flux.
[11] The coupled equations of the water table layer and

the underlying confined portions are subject to following
initial and boundary conditions:

h x; 0ð Þ ¼ H0 xð Þ; x 2 D; ð2cÞ

h x; tð Þ ¼ H x; tð Þ; x 2 GD; ð2dÞ

KS xð Þrh x; tð Þ � n xð Þ ¼ �Q x; tð Þ; x 2 GN : ð2eÞ
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where H0(x) is the initial hydraulic head in the flow domain
D; H(x, t) is the specified head on the Dirichlet boundary
segments GD; Q(x, t) is the flux across Neumann boundary
segments GN; and n(x) is an outward unit vector normal to
the boundary GD [ GN. Note that equations (2a)–(2e) are in
accordance with the mathematical formulation solved by
the U.S. Geological Survey model MODFLOW-2000
[Harbaugh et al., 2000] in unconfined situations.
[12] In this study, KS(x) is taken as a random function and

(2a)–(2e) become stochastic partial differential equations.
All other parts of the flow model, i.e., sink/source, storage
parameters and initial/boundary conditions, are assumed to
be deterministic. Our goal here is to solve for the mean head
and its associated uncertainty (expressed in terms of
variance). The flux statistics can also be estimated after
the stochastic flow equations are solved [Lu and Zhang,
2004a].
[13] As mentioned earlier, to solve stochastic equations

(2a)–(2e), we apply the KLME approach proposed by
Zhang and Lu [2004]. In this approach, the log-transformed
hydraulic conductivity field is first expanded into a series in
terms of orthogonal random variables using KL decom-
position. Next, head is expanded into a perturbation series
in which each individual term was further decomposed as
products of orthogonal random variables. Finally, the
statistical moments of model predictions (i.e., heads and
fluxes) are constructed algebraically based on the coeffi-
cients of dependent variable expansions. All equations for
these coefficients are reformulated such that they share
exactly the same structure with original flow equation,
which allows us to take advantage of any existing
groundwater simulator, such as MODFLOW-2000, as the
solver.

2.2. Karhunen-Loeve Expansion of Hydraulic
Conductivity

[14] Let Y(x) be the natural logarithm of a hydraulic
conductivity field, Y(x) = ln[KS(x)]. Its covariance function
CY(x1, x2) = hY0(x1)Y0(x2)i, where the perturbation Y0(x) is
defined as Y0(x) = Y(x) � hY(x)i and h i represents the mean
(expectation) operator, is positive definite. The hydraulic
conductivity KS(x) can be written as

KS xð Þ ¼ exp Y xð Þ½ 	 ¼ KG xð Þ
X1
m¼0

Y 0 xð Þ½ 	m

m!
; ð3Þ

where KG(x) = exp[hY(x)i] is the geometric mean of
hydraulic conductivity KS(x), which represents a relatively
smooth unbiased estimate of the unknown random function
KS(x) and can be estimated using geostatistical approaches,
such as kriging methods.
[15] Since the covariance function of Y(x) is positive

definite, it can be decomposed as [Courant and Hilbert,
1953]

CY x1; x2ð Þ ¼
X1
n¼1

�n’n x1ð Þ’n x2ð Þ; ð4Þ

where �n and ’n(x) are respectively the eigenvalues and
deterministic eigenfunctions that can be determined by

solving the following Fredholm equation analytically or
numerically [Courant and Hilbert, 1953]:

Z
D

CY x1; x2ð Þ’ x1ð Þdx1 ¼ �’ x2ð Þ: ð5Þ

For some special covariance functions, �n and ’n(x) can be
solved analytically [Zhang and Lu, 2004]. Numerical
solutions of eigenvalues and eigenfunctions are available
[Press et al., 1992]. The set of eigenvalues �n can be
arranged as a nonincreasing series with respect to subscript
n and the rate of decrease depends on the ratio of the
correlation length of the random conductivity field to the
size of physical domain [Ghanem and Dham, 1998; Zhang
and Lu, 2004]. The effects of correlation lengths on the
stochastic solutions of (2) and on the performance of the
proposed KLME approach will be discussed in section 3.
[16] The mean-removed stochastic process Y0(x) can be

expanded in terms of �n and ’n(x) [Loeve, 1977],

Y 0 xð Þ ¼
X1
n¼1

�n
ffiffiffiffiffi
�n

p
’n xð Þ; ð6aÞ

where �n are the orthogonal random variables satisfying
h�ni = 0 and h�m�ni = �mn, �mn taking value 1 when m = n
and 0 otherwise. Equation (6a) is called the KL expansion,
which can be interpreted as a decomposition of stochastic
process Y(x) in a space spanned by the set of orthogonal
random variables xn. These random variables are Gaussian
if Y(x) is Gaussian. Because the eigenvalue �n and the
corresponding eigenfunction ’n(x) always appear together,
we combine them into a new function fn(x) =

ffiffiffiffiffi
�n

p
’n(x),

Y 0 xð Þ ¼
X1
n¼1

�nfn xð Þ: ð6bÞ

2.3. Karhunen-Loeve Expansion-Based Moment
Equations (KLME)

[17] In the KLME approach, as is done in the conven-
tional ME method, hydraulic head is first decomposed with
a perturbation expansion as,

h x; tð Þ ¼
X1
m¼0

h mð Þ x; tð Þ; ð7Þ

where h(m)(x, t) is the mth-order expansion in terms of the
standard deviation of log hydraulic conductivity, �Y. The
term hB(x, t) is expanded similarly such that hB

(0)(x, t) =
h(0)(x, t) � BOT1 and hB

(i)(x, t) = h(i)(x, t) for i � 1.
Substituting expansions of h(m)(x, t), hB(x, t), and KS(x) into
equations (1) and (2) and separating terms at different
orders, one obtains a set of expanded equations for different
orders of head terms. Dropping coordinate x and time t for
simplicity, the zeroth-order equations for the top water table
layer and the underlying confined layers can be written
respectively as

rxy � KGh
0ð Þ
B rxyh

0ð Þ
h i

þ gu þ KG

@h 0ð Þ

@z
¼ Sy

@h 0ð Þ

@t
; ð8aÞ
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r � KGrh 0ð Þ
h i

þ gc ¼ SS
@h 0ð Þ

@t
; ð8bÞ

subject to initial and boundary conditions

h 0ð Þ x; 0ð Þ ¼ H0 xð Þ; x 2 D; ð8cÞ

h 0ð Þ x; tð Þ ¼ H x; tð Þ; x 2 GD; ð8dÞ

KGrh 0ð Þ x; tð Þ � n xð Þ ¼ �Q x; tð Þ; x 2 GN : ð8eÞ

The first-order equations for the top water table layer and
the underlying confined layers can be written respectively
as

rxy � KGh
0ð Þ
B rxyh

1ð Þ
h i

þ KG

@h 1ð Þ

@z
þ g 1ð Þ

u ¼ Sy
@h 1ð Þ

@t
; ð9aÞ

r � KGrh 1ð Þ
h i

þ g 1ð Þ
c ¼ SS

@h 1ð Þ

@t
; ð9bÞ

subject to

h 1ð Þ x; 0ð Þ ¼ 0; x 2 D; ð9cÞ

h 1ð Þ x; tð Þ ¼ 0; x 2 GD; ð9dÞ

KGrh 1ð Þ x; tð Þ � n xð Þ ¼ Y 0Q x; tð Þ; x 2 GN ; ð9eÞ

where

g 1ð Þ
u ¼ rxy � KG Y 0h

0ð Þ
B þ h 1ð Þ

	 

rxyh

0ð Þ
h i

þ KGY
0 @h

0ð Þ

@z
; ð9f Þ

g 1ð Þ
c ¼ r � KGY

0rh 0ð Þ
h i

: ð9gÞ

Similarly one can derive equations for higher-order head
terms (see Appendix A). In the conventional ME approach,
head statistics are directly solved from moment equations
that are derived from these equations. For instances, taking
ensemble mean of equations (A1)–(A7) yields the equa-
tions with initial and boundary conditions for the second-
order correction, hh(2)i. The equations for the first-order
head covariance Ch(x, t; y, 	) can be obtained by
multiplying equations (9a)–(9g) by h(1)(y, 	) and then
taking ensemble mean. Owing to the large dimensionality of
covariance equations, the conventional ME method can be
computationally very demanding for large-scale problems.
It has been demonstrated that corrections of second- and
higher-order are extremely difficult to implement in the
conventional ME method except under certain simplified
conditions [Hsu et al., 1996; Zhang, 2002].

[18] In the KLME method, however, one does not solve
higher-order moment equations directly. Instead, h(m) are
further expanded in terms of the orthogonal random
variables that are used to decompose Y0(x),

h mð Þ ¼
X1

i1 ;i2 ;...;im¼1

Ym
j¼1

�ij

 !
h

mð Þ
i1;i2;...;im

; ð10Þ

where hi1,i2,. . .,im
(m) are deterministic functions to be deter-

mined; i1, i2, . . ., im are referred to as modes of head at the
mth order. It is noteworthy that the polynomial chaos
expansions byGhanemand Spanos [1991] are not suitable for
expanding h(m) individually. For instance, if h(2) is expanded
using the second-order polynomial chaos {�i1�i2 � �i1i2} as
h(2) =

P
i1;i2

(�i1�i2 � �i1i2)hi1i2
(2), this will result in hh(2)i = 0

as h�i1�i2 � �i1i2i � 0. However, in general, hh(2)i is not
equal to zero unless the medium is unbounded and
statistically homogeneous [Zhang, 2002].
[19] By substituting (10) and the KL decomposition of

Y0(x), i.e., (6b), into (9) and recalling the fact that the set
{�i} are orthogonal, one obtains the governing equations for
the first-order mode coefficients hi

(1) for the top water table
layer and the underlying confined portions,

rxy � KGh
0ð Þ
B rxyh

1ð Þ
i

h i
þ KG

@h
1ð Þ
i

@z
þ g 1ð Þ

ui
¼ Sy

@h
1ð Þ
i

@t
; ð11aÞ

r � KGrh
1ð Þ
i

h i
þ g 1ð Þ

ci
¼ SS

@h
1ð Þ
i

@t
ð11bÞ

subject to initial and boundary conditions

h
1ð Þ
i x; 0ð Þ ¼ 0; x 2 D; ð11cÞ

h
1ð Þ
i x; tð Þ ¼ 0; x 2 GD; ð11dÞ

KGrh
1ð Þ
i x; tð Þ � n xð Þ ¼ fiQ x; tð Þ; x 2 GN ; ð11eÞ

where

g 1ð Þ
ui

¼ rxy � KG fih
0ð Þ
B þ h

1ð Þ
i

h i
rxyh

0ð Þ
n o

þ KGfi
@h 0ð Þ

@z
; ð11fÞ

g 1ð Þ
ci

¼ r � KGfirh 0ð Þ
h i

: ð11gÞ

Similarly one can derive equations for higher-order mode
coefficients hi1,i2,. . .,im

(m) at m � 2 (refer to Appendix B).
[20] Comparing the equations between the water table

layer (e.g., (11a)) and underlying confined portions (e.g.,
(11b)), it is clear that the nonlinearity resulting from
unconfined flow adds a large complexity to the KLME
formulations. The artificial source/sink terms in (11a) and
(11b) contain more terms for the water table layer than those
for the underlying confined portions. Moreover, the coef-
ficients to be solved, i.e., hi

(1), appear in (11f), which means
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that equations (11) are nonlinear and must be solved in an
iterative manner whenever unconfined flow is present.
[21] Once the deterministic coefficients hi1,i2,. . .,im

(m) are
calculated, one can easily compute the mean head and its
variance (as well as other moments) by simple algebraic
operations. For example, up to the third order in �Y, h �P3
m¼0

h(m), the mean head can be approximated as

hh i �
X3
m¼0

h mð Þ
D E

¼ h 0ð Þ þ
X1
i¼1

h
2ð Þ
ii ; ð12Þ

where the first term in the right-hand side is the zeroth-order
mean head solution and the second term represents the
second-order correction, where terms hi,j

(2) for i 6¼ j disappear
because of h�i�ji = 0. The first-order correction to the
zeroth-order mean is zero. The head variance can be
approximated as

�2
h �

X1
i¼1

h
1ð Þ
i

h i2
þ 2

X1
i;j¼1

h
2ð Þ
i;j

h i2
þ 6

X1
i;j¼1

h
1ð Þ
i h

3ð Þ
i;j;j

h i
; ð13Þ

where the first term in the right-hand side is the head
variance up to the first order in the variance of log
conductivity �Y

2; and the second and third terms represent
the second-order correction in �Y

2. Detailed derivations of
(12) and (13) are given by Zhang and Lu [2004]. The mean
and variance of fluxes are computed in a similar manner
[Lu and Zhang, 2004a].
[22] Note that equations for hi1,i2,. . .,im

(m) , as shown in (8)
and (11) for h(0) and hi

(1), have been formulated in the
same structure as the original flow equations (2a)–(2e).
Therefore any existing simulator, such as MODFLOW-
2000 [Harbaugh et al., 2000], can be directly used to
solve hi1,i2,. . .,im

(m) . Moreover, due to the same structure of
these equations, the left-hand side coefficient matrix
remains unchanged for all numerical solutions of terms
hi1,i2,. . .,im

(m)
. This feature further allows us to significantly

increase the computational efficiency of the KLME
approach, which has been a major effort in one of our
ongoing research projects.
[23] Equations for hi1,i2,. . .,im

(m) can be solved sequentially
from low to high order, and at the same order m the

equations are independent of each other, which means that
equations at the same order can be solved in parallel.
The solution process can be summarized as follows: (1) at
the current time step, solving the zeroth-order term h(0)

from (8), (2) solving hi
(1) from (11) for different modes

i, (3) solving higher-order terms hij
(2), hijk

(3), etc., if needed,
(4) computing the mean and variance of head using (12) and
(13), and (5) adding a time increment and repeating
steps 1–5, if needed. A new code, MODFLOW-STO,
has been developed to numerically implement the
stochastic formulation presented in this study, in which
MODFLOW-2000 is taken as a subroutine to solve for
h(0) and hi1,i2,. . .,im

(m) .

3. Illustrative Examples

[24] Two hypothetical numerical experiments were con-
ducted to examine the accuracy of the approach presented in
this work for stochastic modeling of flow under unconfined
conditions. Results from the KLME method were compared
to those from the classical MC simulations. Computational
efficiency was also compared between the KLME approach
and MC simulations. To facilitate comparisons, identical
numerical meshes were used in both approaches, although
the KLME method may take a much coarser grid resolution.
In following test problems the log conductivity field is
assumed to be second-order stationary and follows a sepa-
rable exponential covariance function,

CY x1; x2ð Þ ¼ �2
Y exp � jx1 � x2j


x
� jy1 � y2j


y

�
� jz1 � z2j


z

�
; ð14Þ

where 
x, 
y and 
z are the correlation lengths at x, y, and z
directions, respectively. Analytical solutions of eigenvalues
and eigenfunctions are available for this covariance function
[e.g., Zhang and Lu, 2004]. The equation is in three-
dimensional (3-D) form and can be reduced to 2-D (x, y)
plane by simply disregarding the z component. Other types
of covariance functions have been implemented in the code
‘‘MODFLOW-STO’’, in which the solutions of eigenvalues
and eigenfunctions are obtained numerically [Press et al.,
1992]. Preliminary investigations indicated that although
the detailed results vary, general observations obtained from
these covariance functions are similar to those with (14)
regarding the KLME approach and are therefore not shown
here.

3.1. Two-Dimensional Unconfined Flow

[25] In this example we tested the KLME approach in a
2-D unconfined flow system. The flow domain is a rectangle
of 30 m long by 10 m wide (Figure 1). There is no flow
across the northern and southern boundaries, while on the
west and east borders the heads are constant at 11 m and 10 m,
respectively. A finite difference mesh of 121 by 40 regular
cells (0.25 m on a side) is used to represent the domain. It is
noteworthy that half of the constant head boundary cells are
not actually involved in the block-centered calculation
(which is the case in MODFLOW-2000); as a result one
extra column of cells are added such that the effective size of
the finite difference model is equal to that of the real
problem. The origin of coordinate system is at the upper,
left corner, and points to east in x direction and to south in y
direction. Unless specified otherwise, the log conductivity

Figure 1. Schematic diagram of model setup in the 2-D
unconfined flow problem. Line A-A0 indicates the location
along which results are compared between the KLME and
MC approaches.
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field has an unconditional zero mean (KG = 1.0 m/day),
variance �Y

2 = 1.0 and correlation lengths 
x = 
y = 5.0 m.
[26] As mentioned earlier, in the KLME approach we

obtained the solutions of hi1,i2,. . .,im
(m) up to the third order,

namely, h(0), hi1
(1), hi1,i2

(2) , and hi1,i2,i3
(3) . Unless specified

otherwise, hi1
(1) were calculated for the first 100 modes,

i1 = 1; 100 at the first order; at the second order, hi1,i2
(2) were

calculated for the first 20 by 20 modes, i1, i2 = 1; 20; and at
the third order, hi1,i2,i3

(3) were calculated for the first 10 by 10
by 10 modes, i1, i2, i3 = 1; 10. Note that because of the

symmetry of hi1,i2,. . .,im
(m) with respect to their subscripts, we

only needed to compute hi1,i2
(2) for 1 � i1 � i2 � 20 and hi1,i2,i3

(3)

for 1 � i1 � i2 � i3 � 10. Therefore a total of 1 (zeroth
order) + 100 (first order) + 210 (second order) + 220 (third
order) = 531 mode calculations are required at each time.
These mode numbers were chosen sufficiently large that the
statistics of hi1,i2,. . .,im

(m) converge at the first three orders for
different cases discussed below. In order to achieve both
computational efficiency and accuracy, the optimal combi-
nation of mode numbers at different orders may vary from
case to case, depending on the specific model setting and
conductivity statistics under consideration. In the MC
simulations it was found that generally about 5000
realizations were needed for the statistics of model outputs
to converge in this example. The computational effort is
approximately the same between one MC realization and one
mode simulation.

3.1.1. Steady State, No Recharge
[27] In the first case we investigated a steady state flow

field without recharge. Figures 2a and 2b show the mean
and variance of heads calculated from both KLME and MC
approaches. Results are illustrated along a cross section A-
A0 (Figure 1) that runs through the middle of domain in the
mean flow direction along which both head and flux
quantities vary the most. For easy visualization, the KLME
results are plotted for one data point out of every four. The
zeroth-order mean head is based on the first term in the
right-hand side of equation (12) only, while the second-
order mean includes both the first and second terms (i.e., the
zeroth-order mean plus a second-order correction). Clearly,
because of the nonlinear nature of flow, the head gradient is
not uniform along the flow direction. The water table is
relatively flat in the upstream region and becomes steeper in
the downstream front. There is no distinguishable difference
between all three mean heads due to the particular problem
configuration in this case.
[28] Figure 2b indicates that head variance is not sym-

metric in the unconfined flow system. Contrary to the
results for confined flow [Zhang and Lu, 2004], head
variance in unconfined flow is asymmetric and skewed
toward downstream where head gradient is larger. At the
two constant head boundaries variance is zero as those
heads are prescribed as constant and their values remain
unchanged throughout the simulation. The first-order
KLME head variance is based on the first term on the

Figure 2. Mean and variance of heads and fluxes calculated along line A-A0 in the 2-D steady state
example without recharge: (a) mean head, (b) head variance, (c) mean flux, and (d) flux variance. The
correlation lengths of random conductivity field are 5.0 m in both x and y directions, and the log variance
is 1.0. For easy visualization the KLME results are plotted for one data point out of every four.
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right-hand side of (13), while the second-order variance
includes both the first- and second-order contributions, i.e.,
all three terms of (13). Overall, both orders of head variance
calculated from KLME are effective in representing the MC
results. Close examination indicates that the calculated
values of the first-order KLME head variance are generally
larger than those of MC, and the second-order correction is
negative and improves solution accuracy by rectifying the
overshoot in first-order calculation.
[29] The mean and variance of fluxes in the ambient flow

direction (x) are plotted in Figures 2c and 2d, respectively.
Because of increasing head gradient, the mean value of
fluxes increases in the downstream direction, and so does
flux variance. The two KLME approximations of the mean
fluxes are accurate, and the second-order correction shows
slight improvement in matching the MC results, particularly
in the downstream area. For flux variance, despite some
underprediction, both orders of KLME values provide a
consistently good approximation of the MC solution.
Similar to the mean of fluxes, second-order flux variance
shows slight improvement over the first-order result. It is
noteworthy that because of the nonlinear nature of
unconfined flow, the increase of both mean and variance
of fluxes becomes accelerated in the flow direction.
[30] The effects of the correlation length and variance of

the random conductivity field have been explored in detail
by Zhang and Lu [2004] for confined flow systems. To
investigate these effects for unconfined flow, we conducted
two additional sets of numerical simulations here. First, the

correlation lengths hx and hy are increased to 10.0 m while
all other model settings remain unchanged. As demonstrated
by Ghanem and Dham [1998] and Zhang and Lu [2004],
larger correlation lengths increase the rate of decline in the
series of eigenvalues �n and intuitively, the number of
modes required at each expansion order will be less. On the
other hand, the contributions of higher-order terms to the
overall solutions increase because the products of leading
eigenvalues in the �n series become relatively more
significant. For examples, in the second-order mode
equations (B6) and (B7) the artificial sink/source g terms
are proportional to the products of fi and fj, gui,j

(2), gci,j
(2) / fifj,

and in (B13) and (B14) gui,j,k
(3) , gci,j,k

(3) / fifjfk.
[31] Figure 3 shows the mean and variance of heads and

fluxes computed from both MC and KLME approaches at
correlation lengths 10.0 m. There is no distinguishable
change on mean heads. For the mean fluxes and variance
of heads and fluxes, however, the computed statistics
increase noticeably after correlation lengths are increased
to 10.0 m. Furthermore, the second-order correction in the
KLME approach becomes more pronounced when corre-
lation lengths increase, resulting in significantly better
agreement between KLME and MC results for head
variance, mean fluxes and flux variance. Comparisons
between Figures 2 and 3 indicate that for small correlation
lengths, the contributions of higher-order terms are rela-
tively small and the first-order results alone provide an
adequate approximation of the head and flux variance,
although the number of modes required may be potentially

Figure 3. Mean and variance of heads and fluxes calculated along line A-A0 when conductivity
correlation lengths are increased to 10.0 m in both x and y directions: (a) Mean head, (b) head variance,
(c) mean flux, and (d) flux variance. Other model settings remain identical to those for Figure 2.
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large. When correlation lengths become large, the higher-
order terms become more important and need to be con-
sidered in order to better characterize flow statistics. How-
ever, the number of modes at each expansion order can be
reduced. It is noteworthy that in this example the correla-
tion lengths have been set extremely large as compared to
the domain size, yet the second-order KLME results pro-
vide a very accurate match on both head and flux statistics
such that the third or higher term is not required in the case
of a moderate log conductivity variance.
[32] To investigate the effects of the variance of log

conductivity, we increased �Y
2 from 1.0 to 2.0 while retained

other model parameters identical to those for Figure 2. As
demonstrated by Zhang and Lu [2004], the magnitudes of
eigenvalues increase directly with the variance �Y

2 as it can

be proved that W�Y
2 =

P1
n¼1

�n, where W is the measure of the

domain size (the total length, area or volume for 1-D, 2-D,
or 3-D domain, respectively). Intuitively, when �Y

2 is large,
both higher-order terms and a larger number of modes at
each expansion order are potentially needed in order to
obtain accurate solutions. Figure 4 shows the results of head
and x flux moments when �Y

2 is increased to 2.0. Compared to
Figure 2, the mean of heads and fluxes shows little change.
The calculated variance for heads and fluxes, on the other
hand, becomes substantially larger when the variance of
underlying conductivity field increases. The first-order
KLME head variance values are higher than those from
MC, and the second-order terms are capable of lowering the

large overestimation back to the appropriate level. For flux
variance, the first-order KLME results show a large
underestimation and the second terms show more
improvement in matching the MC solution than those in
Figure 2 but not as much as those on head variance. The
more mismatch error by KLME on flux statistics is likely
due to the more nonlinear relationship between flux and
conductivity (flux q = KSrh where h is further a function
of KS). It should be pointed out that when the log
conductivity variance is increased to 2.0, the flux
variances calculated by the MC approach also show
some oscillations and additional realizations appear
needed for better accuracy of MC results.
3.1.2. Steady State With Recharge
[33] Compared to the case in section 3.1.1, recharge is

added in a region of 10 rows by 30 columns (x: 11.125 �
18.625 m; y: 3.75 � 6.25 m) at rate 0.1 m/d. All other model
settings remain unchanged. Figure 5 displays the calculated
moments for heads and x fluxes after recharge is included.
In all situations the KLME approach is able to provide an
effective agreement on MC solutions. It is seen that because
of recharge, the mean heads are raised throughout the
system and groundwater divide forms in the recharge area.
The second-order correction shows some improvement over
the zeroth-order mean heads in the KLME approach,
especially in the vicinity of the recharge area. The
calculated values for head variance are also raised by
recharge. The head variance increases by about a factor of 3

Figure 4. Mean and variance of heads and fluxes calculated along line A-A0 when log conductivity
variance is increased to 2.0: (a) mean head, (b) head variance, (c) mean flux, and (d) flux variance. Other
model settings remain identical to those for Figure 2.
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compared to Figure 2b. Furthermore, the increase in head
variance is mostly in the downstream area and the resulting
variance curves are more skewed. Unlike previous cases
(Figures 2b–4b), it is interesting to note that the first-order
head variance calculated by KLME is smaller than the MC
result when recharge is present. The second-order correction
in KLME is positive and thus improves solution accuracy
by rectifying the underprediction in first-order calculation.
Consistent with the mean head distribution in Figure 5a, the
mean flux becomes negative to the left side of recharge-
induced divide, indicating flow direction has been reversed
toward the western boundary. Two local peaks are created
on the mean flux profile by recharge. Figure 5d shows that
the variance of fluxes is significantly increased by recharge
as compared to Figure 2d. Both orders of flux variance by
KLME are effective in representing the MC result, and the
second-order correction is minimal.
[34] Figures 6 and 7 present the calculated mean and

variance of heads and x fluxes, respectively, when the
conductivity correlation lengths are increased to 10.0 m or
log variance is increased to 2. Other model settings remain
identical to those for Figure 5. In both cases, the mean of
heads and fluxes calculated by KLME is in good agreement
with the MC result. Compared to Figure 5, the second-order
correction on mean heads in the KLME approach is larger
when the conductivity correlation lengths or variance
increases. As in section 3.1.1, the head variance increases
and the second-order correction becomes more significant

when the conductivity correlation lengths or variance
increases. In particular, when the conductivity correlation
lengths increase to 10.0 m, the second-order correction
becomes so large that the second-order head variance
calculated by KLME overshoots the MC result in the
recharge area. For flux variance, however, the computed
values do not show large variation when the conductivity
correlation lengths increase from 5.0 m to 10.0 m. It appears
that under the conditions examined in this case, the
calculated flux statistics converge and do not change further
with conductivity correlation lengths after 5.0 m. When the
variance of conductivity increases (Figure 7), the second-
order correction to head variance is effective and brings
about a close agreement with the MC result, and flux
variance increases and the second-order correction remains
insignificant in the KLME approach.
[35] It is clear from Figures 2–7 that after the addition of

external stresses such as recharge, the flux statistics become
dominated by the lower-order terms (i.e., zeroth and first)
and the contributions of the second-order terms are much
reduced. Comparing the mean flux and flux variance under
the same model settings and conductivity statistics, the
second-order correction is much less significant with re-
charge than without. As will be demonstrated in the
following discussions, by increasing the number of modes
at each expansion order, the first-order KLME results can be
further improved modestly in certain cases, but the change
on the second-order correction remains negligible. More-

Figure 5. Mean and variance of heads and fluxes calculated along line A-A0 in the 2-D steady state
example with recharge: (a) mean head, (b) head variance, (c) mean flux, and (d) flux variance. Except for
the added recharge, other model settings remain identical to those for Figure 2.
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over, the first-order flux variance is more accurate in
representing the MC results after the addition of recharge.
This suggests that in the KLME approach, when determin-
istic external stresses predominate, one may only need to
compute the zeroth-order solution to approximate mean flux
and the first-order mode coefficients to approximate flux
variance.
3.1.3. Transient With Recharge
[36] To investigate temporal effects in the flow statistics

computed by the KLME approach, the test setup for Figure 5
in section 3.1.2 is conducted under transient state with a
uniform specific yield of 0.1. The KLME zeroth-order head
solutions from the case in section 3.1.1 are used as the
initial heads in both KLME and MC transient simulations.
The total simulation time is 100 day as preliminary model
runs indicated that the head solutions do not show much
change beyond this time frame. Simulation is divided into
five time steps that follow a geometric progression with a
successive size multiplier of 2.0.
[37] Figure 8 shows the mean and variance of heads and x

fluxes computed by KLME and MC along A – A0 at three
different time levels t1, t2 and t5, where t1 = 3.2 day, t2 =
9.7 day, and t5 = 100 day. For illustration, only the second-
order KLME results are presented. Because of the
continuous recharge inflow, the mean and variance of heads
and fluxes increase with time. It is noteworthy that the two
local peaks in the mean flux profiles are generated by
recharge right after the start of model simulation and their

values remain essentially unchanged during the temporal
evolution of flow field. For all flow statistics, the KLME
approach is able to provide effective representations of MC
results at different times.
3.1.4. Mode Numbers in the KLME Approach
[38] At the beginning of section 3.1 we have mentioned

that in all cases presented above, without considering the
specific model settings and statistics of underlying random
conductivity field, the mode numbers at different expansion
orders are specified a priori and remain unchanged. The
number of coefficients hi1,i2,. . .,im

(m) calculated in the KLME
approach is about one tenth of the total number of
realizations in MC simulations. Additional computational
efficiency of KLME approach in certain applications can be
demonstrated by further examining the results with different
number of modes. Here we take Figure 2 as an example,
where the first-order results provide an accurate approx-
imation on both head and flux variances and the second-
order correction is found to be small and may be
practically negligible (which is generally the case when
the correlation lengths relative to physical domain size and
the variance of underlying conductivity field are suffi-
ciently small). Figure 9 plots the first-order variance of
heads and fluxes at different modes for the model studied
in Figure 2 where 
x = 
y = 5.0 m and �Y

2 = 1. The first-
order head variance converges quickly after using only the
first 5 modes. For flux variance, the result is more sensitive
to the number of modes and requires about the first 50

Figure 6. Mean and variance of heads and fluxes calculated along line A-A0 when conductivity
correlation lengths are increased to 10.0 m in both x and y directions: (a) mean head, (b) head variance,
(c) mean flux, and (d) flux variance. Other model settings remain identical to those for Figure 5.
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modes to obtain an adequate approximation. Clearly,
computational effort can be further reduced in the KLME
approach by accommodating only those modes that are
contributing significantly.
[39] Further investigations show that although the head

statistics generally converge rather well for the number of
modes selected (i.e., 100 modes at the first order, 20 � 20 at
the second and 10 � 10 � 10 at the third), an even higher
number of modes may further improve the accuracy of flux
statistics under certain circumstances. Figures 10a and 10b
provide the head and flux variance calculated using two
different sets of mode numbers in the KLME approach for
the same model setting as in Figure 4 where �Y

2 = 2. The
flux variance calculated by MC with 5000 realizations was
not stable. After the number of realizations is increased to
10000, the accuracy of MC results is improved. In the
KLME approach, there is no obvious difference on head
variance after the mode numbers are increased from (100,
20 � 20, 10 � 10 � 10), indicated as M1, to M2 (200, 40 �
40, 30 � 30 � 30), at the first, second and third orders,
respectively. This is because the head statistics have already
converged for the first three orders with the smaller mode
numbers. For flux variance, however, the first-order KLME
results show some improvement after the increase of mode
number at the first order, while the second-order correction
shows little change. Note that the improvement on the
second-order KLME results at the larger mode numbers is
mainly due to the change in the first-order values rather than

that in the second-order correction. In this particular
example, a combination of (200, 20 � 20, 10 � 10 � 10)
modes at the first three orders appears sufficient to
approximate the flux variance as further increasing the
mode numbers shows little change on the results. To further
enhance solute accuracy, even higher-order correction terms
may be needed. On the basis of the early work of Lu and
Zhang [2004a], for a moderate variability in log conductiv-
ity the contributions of high-order terms will decrease as the
expansion order goes up; for extremely large variabilities,
the high-order terms may bring about larger contributions
than do the lower-order ones.
[40] As mentioned earlier, the contributions of higher-

order terms become small when the correlation lengths
decrease. Figures 10c and 10d demonstrate that this is so
even when the variance of log conductivity is large (�Y

2 = 2,
which is equivalent to the coefficient of variation for
hydraulic conductivity equal to 253%). After the correlation
lengths are decreased from 5.0 m to 1.0 m, the observation
that the second-order results are essentially the same as the
first-order ones at each mode combination indicates that the
first-order values are more dominant and the second-order
correction becomes negligible, especially in the flux
variance case. On the other hand, a larger number of modes
(i.e., 600) are needed at the first expansion order to better
characterize flux statistics as revealed by sensitivity runs.
Overall, the accuracy of KLME approach improves for both
head and flux variances as the correlation lengths decrease,

Figure 7. Mean and variance of heads and fluxes calculated along line A-A0when conductivity variance
is increased to 2.0: (a) mean head, (b) head variance, (c) mean flux, and (d) flux variance. Other model
settings remain identical to those for Figure 5.
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and the computational effort is about the same since the
second- and higher-order corrections may not be needed
although more modes are needed in computing the first-
order term.

3.2. Three-Dimensional Unconfined Flow

[41] In this example we evaluated the KLME approach in
a 3-D unconfined flow system. The schematic diagram of
model setup is shown on Figure 11. A 3-D 30 m long by 10 m
wide by 9 m deep rectangular parallelepiped is discretized
into a block-centered finite difference mesh of 121 columns
by 40 rows by 3 layers. Each cell is 0.25 m long, 0.25 m
wide and 3 m deep. The western and eastern boundaries
have constant heads of 8.5 m and 7.5 m, respectively. The
origin of coordinate system is at the upper, left and top
corner of the domain, with z direction pointing downward.
There is no flow across the north, south and bottom borders.
A local recharge is applied at rate 0.3 m/d in a region of
10 rows by 30 columns (x: 11.125–18.625 m; y: 3.75–
6.25 m). Here the recharge rate is assigned a high value
such that its effects can be demonstrated better. There is a
well located at the center of domain (column 61, row 21, and
layer 2) and pumps at a volumetric rate of 3 m3/d. Three total
stress periods are used. The first stress period is steady state
without recharge or pumping well. In the second stress
period recharge is included and simulation is conducted in a
transient state. In the third stress period simulation is
transient again and both recharge and pumping well are
considered. The length of first stress period is 1 day. The

second period is 10 days and divided into five time steps
with a geometric multiplier of 2.0. The third period is 5 days
and divided into five time steps with a multiplier of 3.0. The
log hydraulic conductivity field has an unconditional zero
mean (KG = 1.0 m/day), variance �Y

2 = 1.0 and correlation
lengths 
x = 
y = 
z = 5.0 m. Again, in the KLME approach

we obtained the solutions of hi1,i2,. . .,im
(m) up to the third order,

100 modes at the first order, 20 by 20 modes at the second
order, and 10 by 10 by 10 modes at the third order. In the MC
simulations 5000 realizations are used.
[42] Figure 12 displays the mean and variance of heads

and fluxes at the end of the third stress period. Results are
shown along the 20th row of top unconfined layer. Com-
pared to the 2-D cases, the mean of heads is not as curving
and head variance is not as skewed toward downstream.
This is because of the vertical flow communication between
the top unconfined layer and underlying confined portions
in the 3-D model. It is seen that recharge (positive inflow)
has raised the values of all flow statistics, while well
pumping (negative outflow) reduces the calculated values
and creates a local dent on both head and flux variance
curves. For the mean of heads and fluxes, the KLME and
MC results are in close agreement. For head variance, the
first-order values calculated by KLME are lower than the
MC results in the vicinity of recharge and the second-order
correction is able to improve significantly solution accuracy.
For flux variance, there is a noticeable mismatch between
the MC and the first-order KLME results, and the second-

Figure 8. Mean and variance of heads and fluxes calculated at three different times along line A-A0 in
the 2-D transient example with recharge: (a) mean head, (b) head variance, (c) mean flux, and (d) flux
variance. The legend for different times in Figures 8b, 8c, and 8d is shown in Figure 8a.
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order KLME correction is insignificant. Nonetheless, the
general trend of flux variance is the same from the KLME
and the MC approaches. It is noteworthy that the mismatch
of head variance occurs mainly in recharge area; by con-
trast, for the flux variance, the mismatch appears noticeably
right after recharge and continues to remain large through-
out the entire downstream area.

4. Summary and Conclusions

[43] This paper addresses the issue of parameter uncer-
tainty associated with hydraulic conductivity field in
modeling of unconfined flow systems. Here we adopt
the Karhunen-Loeve decomposition-based moment equa-
tion (KLME) approach of Zhang and Lu [2004], and
extend it to nonlinear, unconfined flow situations. In this
approach, the log-transformed hydraulic conductivity field
is first expanded into a series in terms of orthogonal
Gaussian standard random variables. Next, head is decom-
posed as a perturbation expansion series in which each

individual term is further expanded into a polynomial series
of orthogonal Gaussian standard random variable products.
The coefficients associated with head expansions are solved
recursively. The expanded equations are reformulated such
that they share the same structure as the original
deterministic governing equation and therefore any existing
flow simulator such as the USGS groundwater model
MODFLOW-2000 can be used. Finally, the statistics of
head and flux are computed using some simple algebraic
operations on these coefficients. A new code called
‘‘MODFLOW-STO’’ has been developed to implement
numerically the stochastic formulation presented in this
work.
[44] The KLME approach has been evaluated against

traditional MC simulation technique in two hypothetical
numerical experiments. The first test considers a 2-D
unconfined flow system in which simulations are conducted
under different conditions: (1) steady state, no recharge,
(2) steady state with recharge, and (3) transient with
recharge. The second test is on a 3-D unconfined flow
system with three different stress periods and results are
provided for the third stress period in which simulation is
transient and both recharge and a pumping well are includ-
ed. In all cases, the KLME approach is able to provide an
effective solution to the mean of heads and fluxes, the head
variance, and to a less extent, the flux variance. Transient
simulation results indicate that the KLME approach is able
to capture the evolution of flow statistics with time.
[45] Some specific conclusions can be drawn from the two

examples in this work. First, when the correlation lengths
relative to physical domain size and variance of the random
conductivity field increase, the variance of heads and fluxes
generally increases and higher-order correction becomes
more significant in the KLME approach. In situations like
the case in Figure 7 where recharge has a controlling effect
on flow field, flux variance does not show much change after
correlation lengths are beyond certain level. Second, the
head statistics can be accurately approximated using a very
small number of modes in the KLME approach. The flux
results, however, appear more sensitive and require more
modes to converge particularly at the first order. When the
conductivity variance and correlation lengths are large,
higher-order terms may be needed to further enhance solu-
tion accuracy. Third, external sink/source terms such as
recharge and pumping well can raise the variance of heads
and fluxes. In systems containing multiple sinks/sources, the
calculated flow statistics are dependent on their net results.
Fourth, when external sinks/sources have a controlling effect
on flow field, they also dominate the mismatch between
KLME and MC. For the calculated head variance, the major
mismatch always appears near the local recharge area
(pumping well located within recharge area). For flux
variance, the mismatch becomes noticeable right after
recharge and persists throughout the downstream region.
Fifth, in the external sink/source area where the difference
between the MC and first-order KLME approaches is large,
the second-order KLME correction becomes more signifi-
cant on both the mean and variance of heads. However, the
second-order correction on flux statistics is less significant
as the zeroth- and first-order results become more accurate
and dominant. This suggests that in the KLME approach,
when deterministic external stresses predominate, one may

Figure 9. The first-order (a) head variance and (b) flux
variance calculated by the KLME approach with different
number of modes. Model settings are identical to those for
Figure 2. The legend for different modes in Figure 9b is
shown in Figure 9a.
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only need to compute the zeroth-order solution to approx-
imate mean flux and the first-order mode coefficients to
approximate the flux variance. Sixth, compared to 2-D
case, the nonlinear features of flow statistics in a 3-D
system is less pronounced due to the vertical flow com-
munication between top unconfined layer and underlying
confined portions.
[46] A final note worth emphasizing is the computational

efficiency of KLME approach as compared to the tradi-
tional MC technique. In all different test cases presented in
section 3, the KLME approach required much less CPU
run time than did MC simulations. This is because the total
number of mode coefficients is much less than the total
number of realizations in MC simulations. When the
correlation length is small relative to the domain size,
second- and higher-order corrections are not needed al-
though it requires a relatively large number of modes to
accurately compute the first-order solutions; when the
correlation length is large, the number of modes required
at each expansion order is small although second- or
higher-order corrections may be needed. In the case of
moderate variance of log hydraulic conductivity, the first-
or second-order terms provide accurate solutions; in the
case of large variance, higher-order corrections may be

needed, resulting in a larger computational effort. On the
other hand, in the MC approach the computational effort
also increases with the magnitude of the variance in order
to achieve statistical convergence. Moreover, as the struc-
ture of expanded equations is the same at different orders
and modes, the left-hand side coefficient matrix involved

Figure 10. Variance of heads and fluxes calculated by MC and the KLME approach with different
mode numbers and correlation lengths: (a) head variance, 
x = 
y = 5.0 m, (b) flux variance, 
x = 
y =
5.0 m, (c) head variance, 
x = 
y = 1.0 m, and (d) flux variance, 
x = 
y = 1.0 m. The legend for different
curves in Figures 10a and 10c is shown in Figures 10b and 10d, respectively. M1 stands for the mode
numbers (100, 20 � 20, 10 � 10 � 10), M2 stands for (200, 40 � 40, 30 � 30 � 30), and M3 stand for
(600, 40 � 40, 30 � 30 � 30) at the first three expansion orders. Model settings are identical to those
for Figure 4. In the MC simulations, 5000 and 10,000 realizations are used. The log conductivity
variance is 2.0.

Figure 11. Schematic diagram of model setup in the 3-D
unconfined flow problem.
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in each MODFLOW-2000 subroutine calculation remains
identical. This feature can further allow us to significantly
reduce computational effort required by the KLME ap-
proach. Because of its accuracy and computational advan-
tages, the KLME approach is expected to provide a tool for
conducting uncertainty analysis in subsurface flow model-
ing under general field conditions in an efficient, effective
manner.

Appendix A

[47] Substituting expansions of (3), (7) and hB(x, t) into
(2) and separating terms at different orders, one obtains a set
of equations for different orders of head terms. The first-
order equations are shown in (9). The second-order
equations for the top water table layer and the underlying
confined portions are given as

rxy � KGh
0ð Þ
B rxyh

2ð Þ
h i

þ KG

@h 2ð Þ

@z
þ g 2ð Þ

u ¼ Sy
@h 2ð Þ

@t
; ðA1Þ

r � KGrh 2ð Þ
h i

þ g 2ð Þ
c ¼ SS

@h 2ð Þ

@t
ðA2Þ

subject to initial and boundary conditions

h 2ð Þ x; 0ð Þ ¼ 0; x 2 D; ðA3Þ

h 2ð Þ x; tð Þ ¼ 0; x 2 GD; ðA4Þ

KGrh 2ð Þ x; tð Þ � n xð Þ ¼ � 1

2
Y 02Q x; tð Þ; x 2 GN ; ðA5Þ

where

g 2ð Þ
u ¼ rxy �

"
KG

Y 02

2
h

0ð Þ
B þ Y 0h 1ð Þ þ h 2ð Þ

� �
rxyh

0ð Þ þ KG

� Y 0h
0ð Þ
B þ h 1ð Þ

	 

rxyh

1ð Þ

#
þ KG Y 0 @h

1ð Þ

@z
þ Y 02

2

@h 0ð Þ

@z

� �
;

ðA6Þ

g 2ð Þ
c ¼ r � KG Y 0rh 1ð Þ þ Y 02

2
rh 0ð Þ

� �� �
: ðA7Þ

Figure 12. Mean and variance of heads and fluxes calculated along row 20 of top unconfined layer at
the end of third stress period in the 3-D example: (a) mean head, (b) head variance, (c) mean flux, and
(d) flux variance. The third stress period is transient with both recharge and a pumping well.
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Similarly, the third-order equations the top water table layer
and the underlying confined portions are respectively given
as

rxy � KGh
0ð Þ
B rxyh

3ð Þ
h i

þ KG

@h 3ð Þ

@z
þ g 3ð Þ

u ¼ Sy
@h 3ð Þ

@t
; ðA8Þ

r � KGrh 3ð Þ
h i

þ g 3ð Þ
c ¼ SS

@h 3ð Þ

@t
; ðA9Þ

subject to initial and boundary conditions,

h 3ð Þ x; 0ð Þ ¼ 0; x 2 D; ðA10Þ

h 3ð Þ x; tð Þ ¼ 0; x 2 GD; ðA11Þ

KGrh 3ð Þ x; tð Þ � n xð Þ ¼ 1

6
Y 03Q x; tð Þ; x 2 GN ; ðA12Þ

where

g 3ð Þ
u ¼ rxy �

"
KG

Y 03

6
h

0ð Þ
B þ Y 02

2
h 1ð Þ þ Y 0h 2ð Þ

� �
rxyh

0ð Þ þ KG

� Y 02

2
h

0ð Þ
B þ Y 0h 1ð Þ

� �
rxyh

1ð Þ þ KG Y 0h
0ð Þ
B þ h 1ð Þ

	 

rxyh

2ð Þ

#

þ KG Y 0 @h
2ð Þ

@z
þ Y 02

2

@h 1ð Þ

@z
þ Y 03

6

@h 0ð Þ

@z

� �
; ðA13Þ

g 3ð Þ
c ¼ r � KG Y 0rh 2ð Þ þ Y 02

2
rh 1ð Þ þ Y 03

6
rh 0ð Þ

� �� �
: ðA14Þ

In general, at mth order, m � 1,

rxy � KGh
0ð Þ
B rxyh

mð Þ
h i

þ KG

@h mð Þ

@z
þ g mð Þ

u ¼ Sy
@h mð Þ

@t
; ðA15Þ

r � KGrh mð Þ
h i

þ g mð Þ
c ¼ SS

@h mð Þ

@t
; ðA16Þ

subject to initial and boundary conditions,

h mð Þ x; 0ð Þ ¼ 0; x 2 D; ðA17Þ

h mð Þ x; tð Þ ¼ 0; x 2 GD; ðA18Þ

KGrh mð Þ x; tð Þ � n xð Þ ¼ �1ð Þmþ1

m!
Y 0mQ x; tð Þ; x 2 GN ; ðA19Þ

where

g mð Þ
u ¼ rxy � KG

Xm
k¼1

Xk
i¼0

Y 0k�i

k � ið Þ! h
ið Þ
B rxyh

m�kð Þ

" #

þ KG

Xm
k¼1

Y 0k

k!

@h m�kð Þ

@z
; ðA20Þ

g mð Þ
c ¼ r �

Xm
k¼1

KG

Y 0k

k!
rh m�kð Þ

" #
: ðA21Þ

Appendix B

[48] Substituting (10) and (6b) into (9) and recalling the
fact that the set {�i} are orthogonal, one obtains equations
for the mode coefficients hi1,i2,. . .,im

(m) at different orders m. The
equations for first-order mode coefficients hi

(1) are shown in
(11). The equations for the second-order mode coefficients
hi,j
(2) are given as,

rxy � KGh
0ð Þ
B rxyh

2ð Þ
i;j

h i
þ KG

@h
2ð Þ
i;j

@z
þ g 2ð Þ
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i;j
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; ðB1Þ

r � KGrh
2ð Þ
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h i
þ g 2ð Þ

ci;j
¼ SS

@h
2ð Þ
i;j

@t
; ðB2Þ

subject to initial and boundary conditions,

h
2ð Þ
i;j x; 0ð Þ ¼ 0; x 2 D; ðB3Þ

h
2ð Þ
i;j x; tð Þ ¼ 0; x 2 GD; ðB4Þ

KGrh
2ð Þ
i;j x; tð Þ � n xð Þ ¼ � 1

2
fi fjQ x; tð Þ; x 2 GN ; ðB5Þ

where

g 2ð Þ
ui;j

¼rxy � KG

fifj

2
h
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B þ
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1ð Þ
j þ fjh
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i

2
þ h

2ð Þ
i;j

 !"
� rxyh
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1ð Þ
i

2
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1ð Þ
j

 
þ
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B þ h

1ð Þ
j

2
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1ð Þ
i

!#

þ KG fi
@h

1ð Þ
j
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þ fj
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i
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 !
=2þ KG

fifj

2

@h 0ð Þ

@z
; ðB6Þ

g 2ð Þ
ci;j

¼ r � KG firh
1ð Þ
j þ fjrh

1ð Þ
i þ fifjrh 0ð Þ

	 

=2

h i
: ðB7Þ

Note that in (B6) and (B7), to maintain the symmetry of hi,j
(2)

with respect to its indices, we have written the coefficient of
Y0h(1) at mode i, j in the form of (fihj

(1) + fjhi
(1))/2. Similar

treatment has been applied to the coefficients of Y0rxyh
(1),

h(1)rxyh
(1), Y0@h(1)/@z, and Y0rh(1). Moreover, due to the

symmetry, one only needs to solve hi,j
(2) for i � j as hi,j

(2) for
i > j can be directly obtained by simple manipulation of
the subscripts. The equations for the third-order mode
coefficients hi,j,k

(3) can be similarly written as,

rxy � KGh
0ð Þ
B rxyh

3ð Þ
i;j;k

h i
þ KG

@h
3ð Þ
i;j;k

@z
þ g 3ð Þ

ui;j;k
¼ Sy

@h
3ð Þ
i;j;k

@t
; ðB8Þ
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r � KGrh
3ð Þ
i;j;k

h i
þ g 3ð Þ

ci;j;k
¼ SS

@h
3ð Þ
i;j;k

@t
; ðB9Þ

subject to initial and boundary conditions,

h
3ð Þ
i;j;k x; 0ð Þ ¼ 0; x 2 D; ðB10Þ

h
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In general, at mth order and mode i1, i2, . . ., im, m � 1,

rxy� KGh
0ð Þ
B rxyh

mð Þ
i1;i2;...;im

h i
þ KG

@h
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i1;i2;...;im

@z
þ g mð Þ

ui1 ;i2; ...;im
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subject to initial and boundary conditions,
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x; 0ð Þ ¼ 0; x 2 D; ðB17Þ

h
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g mð Þ
ci1 ;i2; ...;im

¼ r � KG

Xm
k¼1

m� kð Þ!
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X
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The summation
P

Pi1 ;i2 ;...;im

in (B20) and (B21) is taken over a

subset of the permutation of {i1, i2, . . ., im} in which
repeated terms of hi1,i2,. . .,im�k

(m�k) are excluded. For example,P
Pi;j;k

firhj,k
(2) = firhj,k

(2) + fjrhi,k
(2) + fkrhi,j

(2). The term firhk,j
(2)

is identical to firhj,k
(2) and thereby excluded as hj,k

(2) calculated
this way is symmetric with respect to its subscript indices.
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